『导读』最近,中国科学院上海硅酸盐研究所和北京大学合作研究,崔厚磊、黄富强等研究者发现了一种全新的超级电容器性能优异的氮化铌电极材料——nb4n5纳米孔薄膜。
未来便携式电子设备和电动汽车急需各种高效电源,正在发展中的超级电容器是一种拥有美妙前景的储能装置,兼为学术界和工业界所青睐。常见的超级电容器电极材料主要包括ruo2、mno2、nio等过渡金属氧化物、碳材料以及导电聚合物材料。近年来,过渡金属氮化物(tin、vn、wn、mo2n等)作为超电材料的研究不断见诸报道,基于低成本、优良的电化学性能、高摩尔密度、良好的电化学稳定性等优点,有望成为优质的器件电极材料,应用于下一代超级电容器储能电源。
最近,中国科学院上海硅酸盐研究所和北京大学合作研究,崔厚磊、黄富强等研究者发现了一种全新的超级电容器性能优异的氮化铌电极材料——nb4n5纳米孔薄膜。nb4n5属于四方晶系的i4/m空间群,为一种富含nb空位缺陷的nacl型结构,从未被用作储能材料。其制备过程简单,只需对nb箔在适当条件下进行阳极氧化,随后在nh3气氛中热处理,即可制备出高度有序的nb4n5纳米孔阵列。xps分析结果表明nb4n5同时包含nb3+和nb5+,混合价态阳离子的存在不仅产生了法拉第赝电容,而且导致了良好的类金属的导电性。在1mh2so4电解液中,0.5macm-2的电流密度下获得了226mfcm-2的面电容量,远高于类似nb2o5电极的
0.2mfcm-2,也达到了金属氮化物纳米结构薄膜电极的最高水平。电流密度增大到10macm-2时,仍可保留为137mfcm-2说明了良好的倍率性能。此外通过多巴胺的聚合、碳化,在nb4n5纳米孔薄膜电极包覆了超薄碳膜,显著改善了循环稳定性,2000个循环伏安周期后电容保留率提高到接近100%。研究表明,碳包覆的nb4n5纳米孔薄膜可以组成双电极对称器件,具有良好的实际应用潜力。
说起业界所谓的“超级材料”,相信不少人首先想到的会是蓝宝石。没错,这种硬度超高的材料因为苹果的青睐而备受关注。但除了蓝宝石之外,科学家们已经在实验室中研发出了不少意义重大的超级材料,本文就将对其中的6种进行介绍。
自我修复材料——仿生塑料
人体具备非常强大的自我修复能力,但建筑环境却并不具备这种能力。去年,伊利诺伊大学的Scott White研发出了一种具备自我修复能力的仿生塑料。这种聚合物内嵌有一种由液体构成的“血管系统”,当出现破损时,液体就可像血液一样渗出并结块。相比其他那些只能修复微小裂痕的材料,这种仿生塑料可以修复最大4毫米宽的裂缝。
热电材料——热量清道夫
对于任何一部会使用能源的设备来说,废热的产生都是不可避免的。根据估算,人类所使用的所有能源当中有2/3都以废热的形式流失了。可要是有办法能够捕捉到这些被浪费的能量呢?
去年,一家名为Alphabet Energy的公司开发出了一种热点发电机,它可被直接插入普通发电机的排气管,从而把废热转换成可用的电力。这种发电机使用了一种相对便宜和天然的热电材料,名为黝铜矿,据称可达到5-10%的能效。
在实验室当中,科学家们已经在研究另一种具备可发展前景,甚至能效更高的热电材料,名为方钴矿,一种含钴的矿物。热电材料目前已经开始了小规模的应用——比如在太空飞船上——但方钴矿具备廉价和能效高的特点,可以用来包裹汽车、冰箱或任何机器的排气管。
钙钛矿——廉价太阳能电池
成本是可再生能源发展中的最大障碍。太阳能正在变得更加便宜,但使用晶体硅制作太阳能电池的成本和能源消耗依然非常高。可除了晶体硅之外,还有一种可用来制作太阳能电池的替代材料,那就是钙钛矿。
钙钛矿被发现距今已经有超过100年的时间了,但科学家直到现在才开始意识到这种材料的潜力。在2009年,使用钙钛矿制作的太阳能电池具备着3.8%的太阳能转化率。到了2014年,这一数字已经提升到了19.3%。相比传统晶体硅电池超过20%的能效,这或许算不了什么,但这里还有其他两个关键点需要考虑:首先,钙钛矿的能效仅在几年的时间里就得到了大幅的提升,且科学家认为,这种材料未来依然有提升的可能;其二,钙钛矿的成本要低得多。
钙钛矿是由特定晶体结构所定义的一种材料类别,它们可以包含任意数量的元素,用在太阳能电池当中的一般是铅和锡。相比晶体硅,这些原材料要便宜得多,且能被喷涂在玻璃上,无需在清洁的房间当中精心组装。
气凝胶——超轻、超强韧
气凝胶看上去似乎是一种不真实的材料。尽管看上去空虚飘渺,但它却能轻松承受一盏喷灯的热量,或是一辆汽车的重量。如名所示,这是一种液体被空气完全替换的胶体,这也就是为什么它看上去就像是一团烟。气凝胶可由任意数量的物质所制成,包括二氧化硅、金属氧化物和石墨烯。由于空气占了绝大部分比重,气凝胶还是一种绝佳的绝缘体。它的结构也赋予其超高的强韧性。
不过气凝胶也有一个致命的缺陷:脆性,特别是原材料为二氧化硅时。但NASA的科学家已经在实验一种由聚合物所制成的柔性气凝胶,作为太空飞船在穿过大气层时的绝缘材料。将其他化合物加入到二氧化硅气凝胶可增强其柔韧性,再加上本身的轻巧、强韧和绝缘性,这将会使其成为一种不可思议的材料。
超材料——光操纵器
如果你听说过超材料(Metamaterial),那介绍它的材料当中应该还提到了“哈利波特”和“隐形斗篷”。是的,超材料的纳米结构能够以特定的方式对光线进行散射,在未来,它或许真的可以让物体隐形。更有意思的是,超材料不光能对可见光进行重新导向。根据制作方式和材料的不同,超材料还能散射微波、无线电波、和不太为人所知的T射线。实际上,任何一种电磁频谱都能被超材料所控制。
比如说,如果用超材料制作一部新型的T射线扫描仪,它的性能可随时改变,无论是被用在医疗还是安全领域。
Stanene——导电率100%的材料
和石墨烯一样,Stanene也是一种由单原子层所制作的材料。但由于使用了锡原子而非碳原子,这使其具备了石墨烯所无法实现的特性:100%的导电率。
Stanene在2013年由斯坦福大学张首晟教授首次进行了理论化。预测Stanene这类材料的电子属性是张教授的实验室所擅长的领域之一,根据他们的模型,Stanene是一种拓扑绝缘体,也就是说,它的边缘是导体,而内部是绝缘体。这样一来,Stanene就能在室温下以零阻力导电。Stanene的属性尚未经过实验测试——毕竟制作单层锡原子并不是件易事——但张教授对于其他一些拓扑绝缘体的多项预测都被证明是正确的。
如果对于Stanene的预测也被证实,那它有可能对所有电子设备内部的微芯片产生革命性影响。也就是说,芯片的性能将会被大大增强。由于电子所产生的热量,硅芯片的性能是有所限制的——如果运转速度过快,发热也会过高——而拥有100%导电率的Stanene却不会有这样的问题。
nb4n5纳米孔薄膜还可作为良好支撑体来沉积其他活性材料,组成复合电极;还有望应用于其他能源相关的应用中。该材料制备方法简单可靠,形貌结构优异,电化学性能优越,可以推广至ti、w、zr、nb和ta等体系中,为开发设计新型的氮化物、氧氮化物超电电极材料提供了良好思路。
相关工作得到了国家自然科学基金、上海市科委重点基金项目的资助。